A Robust Sparse Adaptive Filtering Algorithm with a Correntropy Induced Metric Constraint for Broadband Multi-Path Channel Estimation

نویسندگان

  • Yingsong Li
  • Zhan Jin
  • Yanyan Wang
  • Rui Yang
چکیده

A robust sparse least-mean mixture-norm (LMMN) algorithm is proposed, and its performance is appraised in the context of estimating a broadband multi-path wireless channel. The proposed algorithm is implemented via integrating a correntropy-induced metric (CIM) penalty into the conventional LMMN algorithm to modify the basic cost function, which is denoted as the CIM-based LMMN (CIM-LMMN) algorithm. The proposed CIM-LMMN algorithm is derived in detail within the kernel framework. The updating equation of CIM-LMMN can provide a zero attractor to attract the non-dominant channel coefficients to zeros, and it also gives a tradeoff between the sparsity and the estimation misalignment. Moreover, the channel estimation behavior is investigated over a broadband sparse multi-path wireless channel, and the simulation results are compared with the least mean square/fourth (LMS/F), least mean square (LMS), least mean fourth (LMF) and the recently-developed sparse channel estimation algorithms. The channel estimation performance obtained from the designated sparse channel estimation demonstrates that the CIM-LMMN algorithm outperforms the recently-developed sparse LMMN algorithms and the relevant sparse channel estimation algorithms. From the results, we can see that our CIM-LMMN algorithm is robust and is superior to these mentioned algorithms in terms of both the convergence speed rate and the channel estimation misalignment for estimating a sparse channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments

Sparse adaptive channel estimation problem is one of the most important topics in broadband wireless communications systems due to its simplicity and robustness. So far many sparsity-aware channel estimation algorithms have been developed based on the well-known minimum mean square error (MMSE) criterion, such as the zero-attracting least mean square (ZALMS),which are robust under Gaussian assu...

متن کامل

Sparsity-Aware Recursive Maximum Correntropy Criteria Adaptive Filtering Algorithm

To address sparse channel estimation problem in nonGaussian impulsive noise environment, a recursive maximum correntropy criteria (RMCC) algorithm using sparse constraint is proposed to combat impulsive-inducing instability. Specifically, the recursive algorithm on the correntrioy with a forgetting factor of error at iteration is to solve steady-state error for improving the maximum correntropy...

متن کامل

Sparse Least Logarithmic Absolute Difference Algorithm with Correntropy-Induced Metric Penalty

Sparse adaptive filtering algorithms are utilized to exploit system sparsity as well as to mitigate interferences in many applications such as channel estimation and system identification. In order to improve the robustness of the sparse adaptive filtering, a novel adaptive filter is developed in this work by incorporating a correntropy-induced metric (CIM) constraint into the least logarithmic...

متن کامل

An Enhanced Set-Membership PNLMS Algorithm with a Correntropy Induced Metric Constraint for Acoustic Channel Estimation

In this paper, a sparse set-membership proportionate normalized least mean square (SM-PNLMS) algorithm integrated with a correntropy induced metric (CIM) penalty is proposed for acoustic channel estimation and echo cancellation. The CIM is used for constructing a new cost function within the kernel framework. The proposed CIM penalized SM-PNLMS (CIMSM-PNLMS) algorithm is derived and analyzed in...

متن کامل

Maximum Correntropy Adaptive Filtering Approach for Robust Compressive Sensing Reconstruction

Robust compressive sensing(CS) reconstruction has become an attractive research topic in recent years. Robust CS aims to reconstruct the sparse signals under non-Gaussian(i.e. heavy tailed) noises where traditional CS reconstruction algorithms may perform very poorly due to utilizing l2 norm of the residual vector in optimization. Most of existing robust CS reconstruction algorithms are based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016